NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

pragmatic play slot | tai zalo ve dt | mobile casino echtgeld | 21d | casino royale | mobile casino | casino online uy tín 10nhacai | neteller slots | casino game icon | zindo vin apk | sky vegas casino | jun88 casino | xo so 123 mien bac | kqxsmb 300 ngày gần đây | slot mobil | hôm nay đánh de con gì | hp z420 pcie slots | chot lo to | casino robbery | slot trong liên quân là gì | chơi đánh đàn | gtx 1060 pci slot | casino realistic games | bet365 casino review | best online casino slots | soi cau xs wap | nhacthieunhi | ngôn tình hay | casino campuchia | soi keo ngay mai | reel gems slot | hack slot game online | hai số cuối của giải đặc biệt | hanoi casino list | sdxc card slot | online casino providers | tiki paradise slot | carnival queen slot | ice breaker slot | casino utan registrering | bongdaso vn | free deposit slots | cô dâu gán nợ tập 1 |