NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino bmt | m99 asia | truck simulator vietnam | ku casino 888 | mu alpha test | tha casino | judi slot terpercaya | xstp thứ 7 | code football master 2 vn mới nhất | mơ thấy hổ | soicau247 top | fruit spin slot | đánh bài casino | nằm mơ thấy mình đưa tiền cho người khác | venus casino | wintrillions casino review | thống kê gia lai | bị đứt tay chảy máu đánh con gì | casino hạ long | casino deutsch | el cortez casino | quay thẻ cào miễn phí | mobile slots pay by phone bill | dàn đề 10 số | lô nên tốp | checker bắc ninh | vân tịch truyện | xổ số vũng tàu ngày 11 tháng 1 | bet365 casino apk | giá xe lead 2021 | tần suất loto | BK8 | casino belge | casino royale imdb | india slot | casino table price | yeu apk | grand victoria casino elgin il | chinese casino game | tên liên quân kí tự | slot la gì trong free fire | let it ride casino game | viettel telecom gần đây | nhập code omg 3q 2022 | tỉ số và tỷ lệ 2in1 | 007 casino royale | pragmatic play slot |