NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

soi cầu kép hôm nay | ag ld 789 | slot nghĩa là gì | xs max 128gb | raging rhino slot machine | dien dan an choi mien nam | casino online en directo | ag sbobet | pháp vs kazakhstan | clip 8 phút vtv | soi kèo malaysia vs | casino de veneza | 1973 mệnh gì | top credit card casinos | dafu casino hack | soi keo juve | casino bonus angebote | hình ảnh casino | con số may mắn hôm nay huyền bí | slot spiele | quay hũ slot uw88 | vào bóng nhanh không bị chặn | thống kê loto miền bắc | trade casino | sx minhngoc net | dedicated slot | bảng phong thần 2006 | xxnxx xom | winbet casino | casinos in birmingham alabama | casino usa las vegas | dự đoán xổ số tài lộc | sunrise casino nha trang | new mobile slot sites | situs slot online terbaik | xoilac1 | nhà cái slot | best rtg casinos | check rank lol | bet365 casino bonus | bướm số mấy | soi cau366 net | swipe and roll slot | zone casino msn | slotted hex nut | giờ reset cầu thủ | slot casino free |