NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

đá gà casino 2017 | thống kê giải đặc biệt cả năm | gift shop slot | casino trực tiếp | keo nha cai m88bet | bitly tiengruoi | phủ nano kính | casino minimální vklad 100 kč | hai số cuối giải đặc biệt miền bắc | tsumugi | quay thu mn gio hoang dao | new slot machines 2017 | jetspin casino | viva bong88 | phẩu thuật thẩm mỹ webtretho | online casino tips | roblox mien phi | slot là gì | casino en linea mexico | lich thi dau vleague 2021 | casino gangster | trochoinet | happy luke casino | vinagames | mobile casino echtgeld | mr green live casino | cool play casino | play together miễn phí | casino bonus deutschland | slotty casino | video poker slots | coi bói tình yêu | casino montecarlo | kqxs30 | 7 vien ngoc rong 4 9 | ketquasoso | casino trực tuyến atut | casino 1хслотс | slot mobil | vua tro choi yugioh tap 86 | slot isoftbet | 888 ladies slots | most secure online casino | vip slot | foxwoods casino to mohegan sun | isle of capri casino | don than | indian casinos in oklahoma | 2 số cuối đặc biệt |