NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

uk casino guide | timber la gì | fret slotting jig | casino phú quốc tuyển dụng mới nhất | trusted casino online canada | fret slotting jig | cô dâu gán nợ tập 1 | vé vào casino phú quốc | online casinos that accept neosurf | nằm mơ thấy dây chuyền vàng đánh đề con gì | hells grannies slot | bắn cá tam quốc online-nâng cấp | tao dan 2d | casino hl | huong dan tai xuat kich | slot thai | cuclacnet | free slots 777 games | lucky 888 casino | burning hot slot | hack golden hoyeah slots | xstp thu 7 | nhac thieunhi | thống kê giải đặc biệt cả năm | lời thì thầm của những bóng ma | slot pattern | joe fortune casino | attunement slots dark souls 3 | choi casino truc tuyen | dự đoán an giang | casino live house | royal casino | thống kê đặc biệt theo năm | code football master 2 | 7 spins casino review | hotels near blue chip casino | nhà cái uy tín nhất việt nam | buran casino | energy casino 24 | cleopatra casino | momo app | viettel telecom gần đây | napthenhanh | jun88.casino |