NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

the witcher 3 skill slots | thống kê giải đặc biệt cả năm | attunement slots dark souls 3 | casino thien ha | isle of capri casino | mu88 casino | slot diffuser sizes | free slots | so ketqua | holy moly casino slot | casino royale suit | bet365 tieng viet | hong kong casino | diamond empire slot | quay hu slot | ketqua100ngay | diamond casino and resort | vpay88club | appointment slots | how many ram slots in my laptop | migliori siti slot online | giờ reset fo4 | casino hợp pháp ở việt nam | jackpotcity casino review | chibeasties 2 slot | casino nb events | culi trong bóng đá là gì | spider slot | lô đẹp 888 | rạp xiếc tiếng anh | miter track stop for t slot | cá cược xosobet | xổ số đà lạt ngày 22 tháng 1 | vua hai tac zing me | jackpot slots | tsumugi | grand villa casino vancouver | ku casino top | slots lv bonus | đá gà trực tiếp casino 999 | fortune house slot | đại chiến kame | hu vang slot apk | choi game roblox |