NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

chơi casino trực tuyến chỉ có thua | choctaw casino | casino online italia | william hill slots | dự đoán xsmb xổ số me | big777 đẳng cấp game slots | nhacthieunhi | sòng bài casino campuchia | keo tay ban nha vs thuy dien | đb | trực tiếp copa america 2021 | house of slots free coins | spintastic casino bonus | wyandotte nation casino | slot slot | gói cước viettel wifi | tv hay org hoat hinh | soi cầu 888 2nháy miễn phí | how to get attunement slots dark souls 3 | slots garden bonus codes | phim casino | las vegas casino online | casino slots | royal casino restaurant | tạo dàn đề 3d | list of casinos in iowa | penthouses cuộc chiến thượng lưu tập 7 | rồng vàng slot | tai zindo | casino thomo | valley view casino | ảnh nobita | sudoku mức độ khó | sweet alchemy slot game | wrest point casino | casino vân đồn | msi z270 a pro m 2 slot | happyluke slot game căn phòng vui vẻ | bavet casino | golden galaxy hotel & casino | avatar câu cá | no download casino |