NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot la gì trong free fire | soi mn | double bubble slot | jeetwin casino review | bikini beach slot game | online casino slots australia | máy đánh bạc slot machine | golden hoyeah slots hack | extra slots 1 mhw | naruto phần 2 | bong hinh trong tim | slotted hex nut | thevang tv | woodbine casino valet parking | beste casino app | free deposit bonus slots | elements slot | next co uk vip sale slot | xổ số miền bắc minh ngọc | bong chuyen nu 2017 | m soha | codeplay | best slot machines in las vegas | yêu bắn cá | casino hcm | hybrid slot | siêuno win | nightrush casino online | crown casino da nang | trực tiếp bóng đá hàn quốc vs lebanon | james bond 007 casino royale | casino online uy tín 10nhacai | online casino sk | iosgods | câu lạc bộ bóng đá western united | m88 vin link | roulette casino | golden tripod casino | airport slots | tên kí tự liên quân | adventure palace slot | novibet casino review |