NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino malaysia | top 10 casino | ion casino | slot pintu | msx 150 | slot stop | firekeepers casino 400 | usa casino bonus codes | chống chuột cho xe ô tô | tan suat lo to | mgm casino | stt về cuộc sống chất | câu cá cùng warrior | casino trực tuyến cvproducts | 1 slot nghĩa là gì | xổ số đồng nai ngày 2 tháng 8 | ae888 casino | free money casino | poipet resort casino | bejeweled slot machine | slot slot | nhà cái slot | sandinh pro | bắn cá tam quốc online-nâng cấp | rapidi casino | play together miễn phí | football champions cup slot | đề về 59 hôm sau đánh con gì | jackpotcity casino review | game 777 slot club | evowar io | kích thước iphone 11 | flash slot | ipad 6th generation sim card slot | tham khao xs khanh hoa | vé vào casino phú quốc | primal slot | slot king club | ainsworth slot machines | dai chien kame | pound slots | game of thrones slot machine | kame | ip xs max 128gb | tan so loto |