NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

maplestory pocket slot | dragon king slots | crown casino da nang | ketqua30 net | thống kê tần suất | what is dedicated slot | gold dragon slots | stainless steel slotted screws | xem bói bài tây | your name zing tv | dự đoán bạc liêu | quay thử xsmn 168 | slot book of ra | đăng ký làm đại lý ku casino | kendra lust | trusted online casino sites | scarlet pearl casino | ku casino us | tipico casino | titan king casino hotel & resort | jack king casino | casino slot play | casino definition | mugen 200 slots | trực tiếp đá gà casino hôm nay | casino food menu | winner casino online | potawatomi bingo casino | súng pcp giá rẻ | danh sách những bài hát bolero hay nhất | game h5 la gì | mgm casino washington dc | diễn đàn sex | bet online slots | miếng dán khe cửa đa năng sealboy slot | casino robbery | 1 slot | slot technician | lời giải hay lớp 5 | vnrom bypass | lịch thi đấu world cup 2024 | bestes casino las vegas | billionaire casino slots 777 | judi slot pragmatic | happy luke casino | netent slots |