NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

double up casino slot machines | dell vostro 3578 m2 slot | game offline hay cho laptop win 8 | renton casino | ku casino pro | new casino not on gamstop | top casino | 2 x pci slots | baocaonoibo | casino table rentals | chim bay vào nhà đánh con gì | juegos de casino online | samsung tablet with sim card slot | wad bong da | jade magician slot | bói ngày sinh | corona casino | ketqua wap | bitsat slot | hoi an casino | ladbrokes casino no deposit | con số may mắn lịch ngày tốt | BWIN | hồ tràm casino | game vh | hit it rich casino games | soi cau rong bach kim net | airport slots | tuổi sửu mệnh gì | great blue free slot machine | online slots echtgeld | crown bavet casino hotel | trường nguyệt tân minh | online slots usa | new slot sites no deposit | colorado grande casino | kết quả max 3d | online casino mobile bonus | tải app shopee | hotel and casino | xổ số cà mau ngày 20 tháng 6 | mơ thấy thắp hương | baocaonoibo com | bong88viet | trò chơi casino | bet699 | black mummy slot | vnrom |