NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

travian building slot numbers | 5 slot map device | nettruyen theo dõi | keo nha cai m88bet | xe bus 08 | video poker vs slots | trochoi net | charlestown races and slots | toolgame | pragmatic play slots rtp | slotted or unslotted waste | betfair live casino | mobile slots using phone credit | sodo casino 68 | slot online idn | con số may mắn hôm nay huyền bí | rio all suite hotel & casino | vui game vn | keo nha cai m88bet | fairy tail phần 3 | book of ra deluxe slot | medusa casino | ole777 ole77 | casino deposit paysafecard | ole777 ole77 | venus casino 67 | mơ gãy răng đánh con gì | elk studios slots | u23 dubai cup | marina bay sands casino | casino chemin de fer | slot filling dialogflow | sbobet di dong | game offline hay cho laptop win 8 | kí hiệu đặc biệt liên quân | blackjack online casino live dealer | 2so cuối giải đặc biệt | mod shadow fight 2 | high 5 casino slots on facebook |