NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino girl | bigwin99 slot | singapore casino | blue chip casino hotel and spa | trochoinet | 88 online casino | how many slots for asia in world cup | extra chilli slot demo play | bally slot machines | hellboy slots free | slots that pay cash | code oze | witches wealth slot | tan so loto | 8868 | du doan an giang | chuyển nhượng chelsea | agen live casino | online casino no deposit bonus codes | american online casino | source code casino | thống kê tổng | free slot machines with bonus | wishmaker casino | bets com casino | free slots | 855 crown | regular slotted container box | xsqn | elvis the king slot | city casino online | napthenhanh | 88win casino | giàu to 86 | trang chu 24h mobile | winner casino online | online casino live games best uk | nạp mobile legends | how many caesars casinos are there | bitcoin casino club | fortune slots | new mobile phone casinos | steam tower slot review | slot 777 | slots animal | land slot | casino trực tuyến uy tín nhất | truck simulator vietnam modpure | xổ số vietlott mega |