NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

how to open sim card slot on iphone | free 50 slot mumble server | hollywood casino las vegas | hai số cuối đặc biệt | thai casino online | chơi cờ othello online | trang chu fang69 | 777 casino | đề về 68 hôm sau đánh con gì | du d0an xsmn | golden fish tank slot | đặt cược trái tim | game dá bóng y8 | tin chuyển nhượng chelsea | 88 fortunes slot | b88 ag com | v6bet | conan tập mới nhất | 88win casino | danh sách những bài hát bolero hay nhất | free online video poker slots | casino online mexico | hotline slot game | casino ở việt nam | betvictor live casino | free online video poker slots | soi dàn đề 10 số khung 3 ngày | xskt3mien | xổ số may mắn | online slots echtgeld | cryptocurrency casino usa | michigan casinos map | 88 online casino | thông kê giải đặc biệt theo tháng | hyper casino willkommensbonus | giochi gratis slot | gói wifi viettel | doraemon tập dài mới | code vip hải tặc đại chiến | casino slot machines | win 777 slot | burning desire slot review | beach life slot | naruto truyen ky | k8 casino review | slot game là gì | casino oyunları bedava |