NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

primal slot | live casino malaysia | 888 slots | s666 | 90 phút chấm tv | xổ số miền bắc minh ngọc | spin palace casino review | fifa mobile nhật | lich thi dau bong da seagame 2017 | sliding door slot | hells grannies slot | nguyệt đạo dị giới manga | coral casino review | fruit farm slot | bonus code for slots lv | kết quả trận tokyo | gold party casino free slots | cakhia z1 link | spbo live score | blv giàng a phof trực tiếp | slot dimensioning | ketquasoxo mb | kq100 | kunet | mhw slots | thống kê giải đặc biệt cả năm | cara daftar judi slot online | dell latitude e7470 ssd slot | payment gateway for online casino | panda slots | william hill casino android app download | judi slot pragmatic | rosenborg slot copenhagen | cashanova slot | ketqua wap | thống kê lotto | đê chèm | slot bonus | types of casino games | đặt cược trái tim | fruit mania slot | vua hu | pai gow casino | casino advent calendar | slot in angular | tạo dàn đề 2d | slotted hole | casino de monte carlo monaco france | celtic casino |