NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

fishing casino | green yellow casino | cherry casino playing cards v1 | deutsche casinos mit bonus ohne einzahlung | excalibur hotel & casino | khu đô thị lideco trạm trôi hoài đức hà nội | caravela casino | xem k pc | nhận định as roma | 7 spins casino review | mơ thấy hổ | tiffany mills slots | lucky slots | siêu sao siêu xịt tập 18 | thienhabet nett | best online casinos for us players | swamp attack | taskbar | tai game naruto đại chiến | slot machine casino games | thống kê lotto | rio all suite hotel & casino | asian slot games | casino sex | best slot machines in las vegas | doraemon tập mới nhất | colorado grande casino | poker star casino online | best casino slots | golden palace casino | kim sa casino | đề về 82 hôm sau đánh con gì | slotted hex nut | beste casino app | forest slot | fifa mobile quốc tế apk | trực tiếp copa america 2021 | slotted hole design | con bướm số mấy | nằm mơ thấy rắn | dragon born slot | 888 casino mobile | zone casino msn | gambling slots | online slot machines that pay real money | hatano | slot mobile phones |