NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

live casino usa | casino engineering | casino spiele kostenlos book of ra | venus casino ae888 | trang chủ ku casino | lions pride slot | mad mad monkey slot | harrahs casino online reviews | 888 slots | casino ho tram | slot demo | kings romans casino | mod skin liên quân | u23 dubai cup | casino website | edgewater casino | winner casino online | slot god of wealth | netbet live casino | kí tự tên | james bond 007 casino royale | đánh bài casino trực tuyến | casino potsdamer platz | soi cau 568 | nguyên nhân dẫn đến chiến tranh thế giới thứ 2 | candy jackpot slot machine | casino phượng hoàng bắc ninh | casino hải phòng | soxothantai | gamehayvl | witches wealth slot | game slot doi thuong uy tin | bitcoin casino uk | casino room casino | bán cá hải tượng con 20cm | hai số cuối giải đặc biệt miền bắc | cách đuổi chuột ra khỏi xe ô tô | tim lai yeu thuong | banner slot | giải vô địch brazil | tải ku casino |