NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

kết quả xổ số max 3d | tải bắn cá hoàng kim apk | s666 | hack game slot | lucky8 casino | big wheel slot | coral slots | vua hai tac zing | josé dinis aveiro | pikachu online game | bd soi keo | bonanza slot big win | ketqua xo | tải zalo về điện thoại | dien dan fifa online 3 thao luan chung | an lạc phùng khoang | slot game là gì | diamond empire slot | vipbet | thông kê tổng | cuộc chiến thượng lưu phần 3 tập 10 | casino del bel respiro | game vh | smb to pci e slots | casino moc bai | ô zê | sodo casino 68 | v slot 2040 dimensions | hialeah casino | casino game online roulette | bong888 com | akari tsumugi | truc tiep bong da tv | nhạc đám cưới tiếng anh | casino in russellville arkansas | jack king casino | slot vuejs | casino royale 2006 | win 888 casino | xosobamien | bảng phong thần 2006 | c88 | dream league 2024 | golden cherry casino no deposit codes | one piece zing me | hanoi casino list | bally slot machines | how to go to the casino | mộc bài casino | casino renovations |