NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

exciter son mau dep | trochoinet | mobile zodiac casino | xem truyen hinh vtv3 hd | dàn đề 36 số nuôi 3 ngày | green yellow casino | cach nap zing xu | no download casino | sòng casino | 1gom vaobong không bị chặn | casino buffet prices | bong888 com | hoá ra em rất yêu anh tập 20 | casino winner | best casino guide | cascades casino | slot sensor | european online slots | parx casino bonus codes | ẻt | ohaytv | kinh doanh casino tại việt nam | quad cities casinos | casino online uy tin | xoilac 90phut | bong889 | babushkas slot | ketqua24h vn index | 88 fortunes slot | gaminator slot | cripple creek casino hotels | huyền hạo chiến ký | casino grande monde | new slot sites no deposit | xuatnhapcanh hochiminh | fruit mania slot | kết quả xổ số miền bắc năm 2018 | resorts international casino | gold eagle casino | ole777 ole77 | best casino slots | hoyeah slots | nhan nick | casino machine games | hai số cuối giải đặc biệt | 2fb live | scarlet pearl casino | zing tv thái lan | ketquasoso | best online casinos in ireland |