NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

màu xe hợp tuổi | willkommensbonus casino | oude slot heemstede | tạo dàn 3d | casino hồ tràm grand | trực tiếp bóng đá 91 | w888 casino | 888 bet casino | do son casino | baocaonoibo com | css slot machine animation | express card slot | việt nam vs croatia | nhà cái casino uy tín | ladbrokes casino no deposit | giải vô địch thổ nhĩ kỳ | spintastic casino bonus | xsmn 18 4 2023 | thống kê giải đặc biệt theo tuần theo tháng | dragon fortune slot machine | sodo pro | nohu3 | 5 homestay vũng tàu | energy casino 24 | ai my nhan zingplay | co giao thao | casino ho tram | free welcome bonus no deposit required casino uk | tructiepdagathomo | casino virtual dinero real | casino song | casino oyunları bedava | casino malaysia | slot technician | city casino online | centurion slot game | slot là gì trên facebook | kinh nghiệm chơi slot | warlords crystals of power slot | slot là gì | bongdainfo |