NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

game bài slot đổi thưởng | casino phú quốc mở cửa | mod skin lq | dự đoán xsmb xổ số me | slot machine casino online | slot 888 dragon | miter track stop for t slot | aladdin slot machine | casino bonus deutschland | slots lv | soi dàn đề 10 số khung 3 ngày | chơi cá cược thể thao casino | trollstore | 1 slot | xsmb t5 ht | dự đoán giải đặc biệt ngày mai 247 | download king tips | danh sách các casino ở việt nam | slots free spins no deposit | monopoly slots | ketqua wap | slot 9999 | slot แจก เครดิต ฟรี ไม่ ต้อง ฝาก 2020 | sòng casino | xin một slot | thunderkick slots | miếng dán khe cửa đa năng sealboy slot | video slot machines | golden goddess slots | cassava slot sites | lịch thi đấu playoff lck | lotsa slots | hình ảnh casino campuchia | slots heaven review | mr green live casino | choione | java slot machine source code | crown bavet casino hotel | xhamster mobile |