NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

book of ra deluxe slot | mơ thấy người chết đánh con gì | code king piece 2021 | online casino boss | playboy online slot | jackpot giant slot | best casino guide | cakhia z1 link | scudamores super stakes slot | giochi online slot | uk casino | napa casino | bingo sites with slots | slot machine symbols meaning | tạo dàn đề 3d | slots and games | casino hồ tràm grand | 777win casino | motörhead slot | casinos in south dakota | y8 com 2 nguoi | vg 88 casino | dream league soccer 2024 | buran casino | lô gan bến tre | sodo casino earthgang | thong ke 2 so cuoi giai db | cf báo danh | live asianbookie | express card slot | casino việt nam | gà đá chợ tốt cần thơ | công trình casino nam hội an | crown bavet casino hotel | gà đá chợ tốt cần thơ | cửa gió slot | royal casino restaurant | hotline slot game | dự đoán ma cao | lo gan py | cuộc chiến thượng lưu phần 3 tập 10 | cách nạp tiền ku casino | casino with poker tables near me | free slots no deposit |