NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

miếng dán khe cửa đa năng sealboy slot | centurion slot | campuchia casino | beste casino app | nieuwe casino online | dien dan an choi mien nam | ketquaxoso miennam thu 6 | tai epic slot | online casino mobile bonus | kynu huong tuyet | ignition casino promo codes | hotel and casino | new slots 2017 | wynn casino macau | quad cities casinos | đb | vo tinh nhac duoc tong tai tap 18 | captain jack slots | xsmb đặc biệt tuần | casino online italia | xem bói ngày sinh | lee sa rang | browser casino | lich thi dau futsal world cup 2021 | bet888 casino | how to go to the casino | đá gà trên casino | mega moolah slot game | seriöse online casinos | k8vn | arceus x | mod skin liên quân apk | soi cau mn | charlie m casino | slot vtc | jackpotcity com casino en ligne | jackpot slots games | spintastic casino bonus | w88 is | cara daftar judi slot online | hotels near blue chip casino | casino 888 app | thứ hạng của udinese | exciter 135 giá bao nhiêu | campuchia casino | thunderkick slots | b sports bet |