NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

wm casino | slot machine formula | mega casino | cgv móng cái | k8 casino | gaminator slot | lienquan garena vn code 2021 | đánh bài casino campuchia | soi cau rong bach kim net | online microgaming casino bonuses | casino sign up | william hill casino club mobile | giochi online slot | pcf casino | free 5 no deposit casino uk | người mẹ tồi của tôi tập 11 | doctor love on vacation slot | si xiang slot | disco spins slot | mơ thấy tiền đánh con gì | tai zing speed | fbu edu vn đăng nhập | bongdalu | ku11 today | chống chuột cho xe ô tô | 7 feathers casino and resort | vatgia | casino feest organiseren | 8 day casino | bói bài tây | nạp tiền betway | casino solverde online | casinomeister slot | phay buc ket ban | vợ messi | expansion slots | casino trump | coi bói tình yêu | chumba casino codes | slot casino free | casino bmt | jav akari | gladiator slot review | unity slot machine tutorial | game slot mới nhất | du doan xsbd |