NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

jammin jars slot free | irish slots casino | những bài hát karaoke | ku casino top | sky vegas casino | ipad sim card slot | mod liên quân | slot casino malaysia | 7m cn vn livescore | 3cang | thrills casino review | xosothantai | doctor love on vacation slot | slot studio | yêu nhầm chị dâu tập 29 | monopoly slots | trực tiếp bóng nữ | casino meaning | vua hai tac zing me | dynamite digger slot | casino roulette tips and tricks | crank handle slot re2 | around the world slot | game bai slot | agbong | slot boot | slots and poker | betphoenix casino | casino pour le fun | thầy tuệ hải bị bắt | 188net | live tiếng anh là gì | kí tự tên | quay hũ slot | bet365 casino apk | zen casino | casino girl | thống kê giải đặc biệt cả năm | sexxy tickets 18+ event westgate las vegas resort & casino | 8 slot toaster | gaminator slot | nằm mơ thấy người chết đánh số gì | lịch world cup 2024 | jun88 jun88.casino | casino jobs london | dell vostro 5470 ram slot | slotted or unslotted waste | burning desire slot | charlestown races and slots |