NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

jeetwin casino | xstp thứ 7 | 88 online casino | live casino malaysia | chat zalo me trên điện thoại | best online live roulette casino | chuyển từ word sang excel | dự đoán xổ số kiên giang wap | quay trực tiếp bóng đá hôm nay | xsbinh vuong | ok online casino | new mobile phone casinos | pci card in pci express slot | jackpot city casino free download | slotland casino | thống ke theo tổng | willkommensbonus casino | đầu số 0127 đổi thành gì | tải vichat | game slot online | linear slot drain | parx casino bonus codes | evowars io game y8 | down zalo | thần ẩn tập 15 | best casino for slots in vegas | bocfan | casino đồ sơn đóng cửa | foxwoods casino to mohegan sun | groupe casino limited | agree gì | bet online slots | sdt gai goi zalo | phatloc | used slot machines for sale | 7 vien ngoc rong 4 9 | css slot machine animation | slot stop | online casino jobs from home | xstp thứ 7 | top 100 online casinos uk | flux slot | 2 số cuối giải đặc biệt miền bắc | thống kê giải đặc biệt theo năm tháng |