NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino bonus deutschland | casino hotel for sale | thống kê giải đặc biệt cả năm | sweet alchemy slot | online casino bonus free spins | casino renovations | casino online mexico | lịch nghỉ tết ngân hàng | igram io | new online casinos 2015 | bonos de casino | game bai slot | usa slots | 1 slot là gì | go aircraft odd | aspers casino logo | miami casino hotel | tải bắn cá h5 | casino game icon | đội đặc nhiệm shield | casino advent calendar | hùng vương vector | hack quay slot | tỉ số pháp maroc | casino realistic games | slotland casino | lq mod skin | winner casino app android | xóa trang word | what online slots pay real money | mobile zodiac casino | new mobile phone casinos | thống kê tần suất | live casino free play | yandere simulator | bếp từ đôi điện máy xanh | new york new york hotel & casino | out lock | xvedeo | taxi 3d | thời tiết phú quốc 10 ngày tới | fika casino | valley view casino | code free fire 2021 | loto678 com | 6696 | slot belvedere | nuoi lo khung net |