NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

crown casino melbourne | lucky ruby border casino | casino 1995 | slot car accessories | trò chơi casino trực tuyến | max attunement slots dark souls 3 | casino hl | gaminator slots | game slot uy tin | 888 slots | slot games for real money | phay buc ket ban | click 150 thai | chuyển file word sang excel | live casino online | banthang vip | cô vợ mẫu mực tập 1 | kinh doanh casino tại việt nam | caesars palace casino | rio all suite hotel & casino | soi cau 568 | live casino tables | dự đoán xổ số bình dương hôm nay | thông kê 2 số cuối giải đặc biệt xsmb | speeder x8 | 6696 | juegos casino dinero real | xstp thu 7 | free slots no deposit | kèo thơm hôm nay | nằm mơ thấy dây chuyền vàng đánh đề con gì | xe đi casino thomo | slot machine template free | slot games that pay real cash | casino phú quốc mở cửa | tạo dàn đề 3d | dafabet casino | 2 số cuối đặc biệt | y8 hai nguoi | online slots pay by phone | slot id | truck simulator vietnam modpure |