NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

rượu sim | choi casino truc tuyen | xổ số miền nam ngày 27 tháng 1 năm 2022 | free slots no deposit | casino montecarlo | truc tiep bong da tv | xsmbtruc | theo dõi nettruyen | steam tower slot review | michigan casinos map | thư upu năm 2024 | slot machine online | slot in angular | gunny hoc sinh | venetian casino las vegas | casino locator map | online casino mobile bonus | đăng nhập tỷ phú 88 | xo so 123 mien bac | slot trong liên quân là gì | hôm nay đánh đề con gì | spela slots | casino sex | fragment of radiance slot mu online | betphoenix casino | tú lơ khơ tá lả phỏm zingplay | soi cầu 666 miền bắc | venetian macau casino | link sopcast bong da hom nay | 360game | slot hu | casino restaurant | electronic slot machines for sale | vô địch brazil | wild swarm slot | việt nam vs croatia | 888 casino mobile | sportsnation casino | energy casino 20 | next co uk vip sale slot | online casino guide | raam slot | seneca ny casino |