NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

wolf hunters slot | slotted brake rotors | mobilebongdaso | thống ke loto | agen slot online terpercaya | bắn cá tiên slot | lotus flower slot machine online | ku casino app | shadow fight mod | dell inspiron 3542 ram slots | tiem vang kim hung quan 5 | pound slots | 88vin link telesafe | ddr2 dimm slots | khu cau keo net | how to win on penny slots | 7 vien ngoc | xem bài tây | slot spiele | taxi 7 chỗ | 78win01 com | used slot machines for sale | soi mn | white wing manteau slot | ok online casino | tạo tên pubg đẹp | chống chuột cho xe ô tô | súng pcp giá rẻ | gta online diamond casino heist security intel | tai game naruto đại chiến | bóng đá tv | nieuw slot voordeur | tần số loto | jack and the beanstalk slot | casino nap tien bang the cao | app casino | casino confidential | online casino tips | vung tau casino | mgm casino | scarlet pearl casino |