NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino abattoir | your name zing tv | gaem | BWIN | best slots at golden nugget biloxi | shadow fight mod | slotted post | giải vô địch brazil | big777 slot | win 777 casino | kqxsdaklak | casino hội an | white wing manteau slot | how many ram slots do i have | mơ ăn thịt chó đánh con gì | casino mga | 7 chakras slot | dự đoán xổ số quảng ngãi wap | mac casino online | casino seo services | retro reels slot | highest paying online casino | tai game naruto đại chiến | dự đoán xổ số bình dương hôm nay | sudoku mức độ khó | quay slot | lq mod skin | maplestory v matrix slot enhancement | online casino games | kaiju slot | casino de monte carlo salle medecin | casino su | ket qua bong dalu | game choang club | nirvana slot | macao dự đoán | dragon fortune slot machine | fast payout casino | bongda tv truc tiep | casino de monte carlo monaco france | free 50 slot mumble server | intertops casino | online casino sk | đội đặc nhiệm shield |