NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

win 777 casino | con trâu số mấy | immortal guild slot | motels in cherokee nc near casino | trực tuyến casino | 88 fortunes slot machine strategy | tải minecraft 1 18 5 miễn phí | xóa trang word | 888 live casino | abc88 slot | 999 slot apk | quay hu slot | nieuwe casino online | slots for fun | rocky gap casino | same day withdrawal online casinos | bet365 casino apk | gtx 1060 pci slot | fifa mobile nexon nhật bản | kq100 ngày | jackpot slots | evowars io | kendra lust | top 100 online casinos uk | best jili slot game | vespa slot | 90 phút | casino trump | rizk casino review | tần xuất hay tần suất | đăng ký jun88 jun88.casino | trang chủ ku casino | baocaonoibo com | tải app safe thần quay | casino trực tuyến khuyến mãi | tên liên quân kí tự | casino song | ainsworth slot machines | vòng quay kim cương free fire | runescape casino | sparks slot review | hoiana casino | slot filling dialogflow | xsmn 18 4 2023 | mơ rắn | canberra casino hotel |