NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bongdainfo | saipan island casino | fantasy fortune slot | ku casino app | ainsworth slot machines | grand victoria casino elgin il | saigon casino | conan tập mới nhất | rắn số mấy | 789 club casino | anonymous casino | kobayakawa | mu alpha test hôm nay | casino 888 app | beste netent casino | parx casino bonus codes | đá gà casino campuchia | hollywood casino las vegas | foxy casino review | around the world slot | situs slot uang asli | hd slot machine | chuyen nhuong chelsea | casino virtual dinero real | trực tiếp đá gà casino hôm nay | chữ kiểu liên quân | m88 casino | culi trong bóng đá là gì | game tặng code 10k | kí tự đặc biệt liên quân | soxome | ok online casino | antwerp fc | vuong quoc vang slot | lo gan py | 888 live casino | royal cash slot | dien dan xs ba mien | sleutel kwijt deur op slot | soicau mn | what is dedicated slot | winclub | casino geant | free slots machines with bonus feature | cách nấu xôi đậu phộng | đánh bài trực tuyến casino | win888 casino | đặc biệt theo năm | kết quả trận tokyo |