NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

druid spell slots | casino hồ tràm tuyển dụng | chó sủa là chó không cắn | 3d slot machine | ket qua 3d | trực tiếp đá gà casino 67 | slot casino gratuit | casino fundraiser ideas | khu đô thị lideco trạm trôi hoài đức hà nội | trực tiếp casino | viết thư upu năm 2024 | borgata hotel and casino | atp world tour finals | biggest online casino uk | eye of horus online slot | keonhacai net1 | poker star casino online | lost life | 10bet casino review | slot parlor | slots in maryland | airport slots | huge casino | security cable slot | game8jp | đá gà trực tiếp casino thomo | best slot machines in las vegas | online casino deutschland legal | vệ sinh buồng đốt xe máy | fruit slots online | stardust slot | xổ số kiên giang ngày 1 tháng 5 | id slot punch | xổ số đà lạt ngày 9 tháng 04 | cutrai | california casinos list | chicago slot | nuôi dàn đề 50 con | vietnam casino | chém hoa quả | cau mn | casino io | super 7 casino |