NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

net slot | 188keo | soạn đánh nhau với cối xay gió | 1973 mệnh gì | slot giochi | new mobile slot sites | slot vlt | motels in cherokee nc near casino | big bang theory slots | pháp vs kazakhstan | ho tram casino jobs | football champions cup slot | 3547700 | slot 888 | king fishing casino | dat cuoc | đội hình real madrid | nuôi dàn đề 50 con | mơ thấy tiền đánh con gì | choi game roblox | tổ chức scp | cú đấm máu | magisk manager | casino girl | tin chuyển nhượng chelsea | giang hồ phố hoa | background casino | caesars palace casino | caro casino | prime slots mobile | top casino | ho tram casino jobs | slots free spins | xoiac | phẩu thuật thẩm mỹ webtretho | casino golden stone | soi kèo bóng đá | lịch thi đấu v-league 2024 | casino hotel for sale | best slot machine games | fishing casino | slot casino gratuit | hay ho net | super casino slots | online casino franchise | casino queen |