NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

mr vegas casino review | win real money slots | sun city casino | casino theme party supplies | kq futsal world cup 2021 | culi trong bóng đá là gì | free mobile casino slots | tai88vin link | bongda365 tv | viral casino | lich thi dau futsal world cup 2021 | đăng ký 1 slot | slot 88 | borgata hotel and casino | 5 homestay vũng tàu | nằm mơ thấy cứt | casino royal | slot stop | boom casino | winbet casino | casino casino bonus | 32red slots | monte carlo casino | fifa mobile nexon nhật bản | casino de veneza | microsoft office full | casino quotes | y8 hai nguoi | sg online casino | tinchihau | best slots in biloxi | ibongda nhan dinh | grand villa casino vancouver | trang ve thon da mp3 | kẻ săn anh hùng | công trình casino nam hội an | akari tsumugi | nieuwe casino online | casino night attire | 1429 uncharted seas slot | gold eagle casino | p3 casino | mayfair casino london | what is dedicated slot | kinh nghiem chien thang baccarat | tiếng anh giao tiếp trong casino |