NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

philip slot | win 88 casino | wishmaker casino | slot machine chairs | doc bao24h hom nay | v9vet | how many ram slots do i have | game slot vtc | casino gold rush | dự đoán bạc liêu | billionaire casino slots 777 | mô tưa bơm nước | casino quotes | slot attendant job description for resume | luckland casino review | pinball slot machine | lich msi 2023 | slot 888 | free deposit bonus slots | thống kê giải đặc biệt theo tuần tháng năm | how to win on penny slots | cool play casino | situs judi online slot | fairy tail phần 3 | online slots pay by phone | dàn lô 10 số miễn phí | game choc pha mi nhan | online casino no deposit bonus keep what you win | deposit 3 casino | tim ban tren zing me | slot mobil | wild scarabs slot | 188bet casino | casino organization | thống kê hai số cuối | 888b today | casino web | bong hinh trong tim | iwin casino | 6696 | thủ lĩnh thẻ bài phần 2 | g25 | đề về 58 hôm sau đánh con gì | nằm mơ thấy chó |