NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

electronic slot machines for sale | online casino verification | free casino slots with bonus | go aircraft odd | bonus code for slots lv | win99 casino | slotland casino | code oze | mơ thấy chó con | bóng đá tv | slot online idn | huge casino | magisk manager | oklahoma casino resorts | dealer casino | win real money slots | casino moc bai | all british casino | james bond casino | sẽ gầy | kq100 ngay | bingo extra casino | chơi casino | signal slot qt | royal casino online | laser fruit slot | b sports bet | casino buffet prices | mari slots | thrills casino review | tai zalo ve dien thoai | casino slots | xxnxx xom | new88 casino | xs max 128gb | cau tuan xsmb | appointment slots | spbo live score | free slot games | penthouses cuộc chiến thượng lưu phần 2 tập 7 | borgata hotel and casino | dac biet năm | ohaytv | giờ reset cầu thủ | bán cá hổ bắc tphcm | dự đoán xổ số kiên giang | dự đoán xổ số an giang |