NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

california casinos list | online slots for money | ku trò chơi casino | chumba casino free sweeps | full slots | game slot moi | gw2 enrichment slot | ket qua vong loai world cup 2018 | bắn cá quay slot | bet888 casino | quay slot | soi cau vietlott | dead target | best mobile slots | soxothantai | spbo | xsmb t5 ht | trang casino quốc tế | siêu nhân thần kiếm game | dinh vi bach khoa | lich thi dau futsal world cup 2021 | casino catalogue | gopher gold slot | ketqua wap | win2888 casino | assassins creed odyssey second weapon slot | rosenborg slot copenhagen | win 888 casino | winner casino erfahrungen | korean bj com | fruit farm slot | vua bai slot | cassava slot sites | fifa hàn | kame | luck of the irish slots | bong hinh trong tim | slot 88 | slot machine jackpot | fairy tail phần 3 | 32red casino review | doctor love on vacation slot | hybrid slot | thống kê lo | steam tower slot review | the rat pack slot |