NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

mơ thấy tiền đánh con gì | shopee app | casino roleta | the nugget casino | omni slots casino | x16 lane graphics slot | viec lam o casino campuchia | xo so truc tiep 3 mien minh ngoc | big win casino | thiendiahoi | s666 | antique slot machines for sale | casinos analytics | wolf rising slot | soi kèo anh vs ch séc | honey select | chuyển từ word sang excel | casino slots | xóa trang trống trong word | 24 vina | kame | k8 casino | cách xóa trang | bet365 casino | loto678 com | no account casino trustly | casinos gratuitos | vòng quay kim cương free fire | bắn cá tiền vàng | cửa hàng royal casino | chạm tay vào nỗi nhớ tập 17 | winstar slot machines | casino royale | 888 casino online | hd slot machine | link sopcast bong da hôm nay | ibongda dự đoán | live casino online free | thông kê tần suất loto | soi kèo 7m | zeus casino | 1 slot là gì | mobile slots bonus | india slot | thoi loan apk | tải ku casino | casino đà nẵng |