NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

mc vs real trực tiếp | best casino slot websites | game aog | cach nap zing xu | đá gà casino trực tiếp hôm nay | ok88 | m99 asia | chơi casino trực tuyến trên điện thoại | winbet casino | birds on a wire slot | xổ số đà lạt ngày 22 tháng 1 | s666 | linh kiện 789 com | sdg777 | best wide slot toaster | jackpot casino login | buffalo grand slot machine | cách tải dream league soccer 2021 | sv 888 casino | 20p slot | slot 777 apk | bóng đá aff cup 2021 | fbu edu vn đăng nhập | giờ vàng chốt số miền bắc miễn phí | free spins no deposit casino | câu hỏi rung chuông vàng | happyluke slot game căn phòng vui vẻ | yukon gold casino | rizk slots | mu alpha test hôm nay | slot toto | nap sohagame | mobile casino echtgeld | đánh bài casino campuchia | jefe casino | gia vang 9999 nam 2009 | slots in maryland | casino w88 | thống kê đặc biệt theo năm | fifa mobile nhật bản | jackpotcity casino review | vip club casino | avatar câu cá | lienquan garena vn code 2021 | reset fo4 | nha trang casino | starburst online slot |