NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

black mummy slot | casino 1995 trailer | slot games that pay real cash | casino vtcgame vn | hình ảnh casino campuchia | scarlet pearl casino | 888 bet casino | siêu bắn cá hũ vàng tài lộc | vtcgame vn đổi mật khẩu | rắn số mấy | new88 casino | game slot tặng tiền | winner casino online | launceston casino | surface pro 4 sd card slot | 512 casino | slotted hex nut | king fishing casino | fun 8802 | slot nghĩa là gì | xstp thứ 7 | hôm nay đánh đề con gì | bình luân xsmb | soxothantai | nằm mơ thấy người chết đánh số gì | thống kê giải đặc biệt theo năm | s666 | line 98 mobile | mod skin liên quân apk | dự đoán xổ số kiên giang wap | beste casino app | 5 free slots | casino royale online gambling | online slots 5 pound deposit | mod_fcgid can t apply process slot for | ae3888 thaotruong |