NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino sex | cách chơi casino | odawa casino | atas casino wiki | phim casino | feyenoord đấu với roma | how to win on penny slots | casino slots real money | 1 slot nghĩa là gì | 777bet casino | ok online casino | câu lạc bộ bóng đá western united | slot racing | maplestory pocket slot | spokane casino | ma nữ đáng yêu tập cuối | mơ thấy vàng | đánh cắp giấc mơ tập 1 | casino night attire | chăm sóc ô tô | xs vietlott chủ nhật | online casino vietnam | gta online diamond casino heist security intel | cherry jackpot casino no deposit bonus | casino 999 | xsmn 21 11 2022 | online casino games for money | cài đặt shopee | minecraft 1 18 tiếng việt | bonus code for slots lv | how many caesars casinos are there | best uk slots | slot machine symbols meaning | logo casino | casino online dialogoupr | mobil casino oyunları | thống kê giải đặc biệt theo tuần tháng năm | gold dragon slots | most secure online casino | lotsa slots | lịch đá bóng hôm nay seagame |