NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

fruit shop slot machine | bingo and slots uk | truyen16 | tải bắn cá hoàng kim apk | best casino for slots in vegas | slot til leje | golden palace casino | borgata hotel and casino | irish slots casino | tải app ku casino | lô nên tốp | chơi pikachu online | casino vietnam | tai ku casino | win sum dim sum slot | new mobile slot sites | tỉ số pháp maroc | tân suất loto | casino web | high 5 casino slots on facebook | soi cầu vip 3 miền | free cash no deposit casino | casino winners hanoi | kostenlose slots | free money casino | thống kê giải đặc biệt hai số cuối | bwing88 | 10 free no deposit mobile casino | tải game đua xe | all slots canada | vietnam casino | dow zalo | dự đoán xổ số miền bắc ngày mai | xem bài tây | tên kí tự game | trò chơi stick war legacy | real slot machines online | ddr2 dimm slots | chòm sao may mắn của anh tập 11 | dd xstn | ketqua100ngay | link 90p |