NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

halloween fortune slot | casino spiele kostenlos book of ra | tasmania casino | poker star casino online | vip club casino | tần số loto | dragon fortune slot machine | lịch chung kết world cup | slot games wiki | fat rabbit slot | ca sĩ giấu mặt | fan8 vin | casino online dinero real | funky monkey slot | online casino bonus free spins | ruleta de casino como se juega | slot machine symbols meaning | casino mộc bài | casino su | cởi quần áo | truyện ngôn tình | slotted | online casino marketing strategy | game bai slot | app live 567 | minecraft 1 18 0 | play online slot machines for real money | thong ke 2 so cuoi xsmb | slot machine online | slot booking app | unibet casino online | slot canyon | casino hu | carte casino mastercard | dortmund đấu với augsburg | hotels with casinos | kieu nu viet net | casino deposit paysafecard | ketting slot | choi game 98 man hinh rong | top credit card casinos | 7 vien ngoc | slotted | scandibet casino | extra slots 1 mhw | sòng bài casino campuchia |