NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lịch thi đấu lck 2021 | cách xóa trang trắng trong word | online casino slots australia | casino trưc tuyên | mơ thấy ma đánh con gì | epic casino | grand victoria casino elgin il | top 10 online casino slots | uk casino | doraemon nobita và vương quốc robot | y8 com 2 nguoi | trang ve thon da mp3 | vnngaynay | agen judi live casino | casino trực tuyến atut | casino table rentals | pt slot | slots garden no deposit bonus codes 2018 | casino ở campuchia | vua hai tac zing | thống kê lo | soi cau tg | shanghai beauty slot | cách xóa trang trống trong word | casino in goa | giaitriluke | game đá bóng world cup 2020 | u23 việt nam vs u23 croatia | time slot | free casino slots with bonus | signal slot qt | casino in venice italy review | slotted hole | kính lặn bắn cá | swamp attack | xo slot | casino bank | mơ thấy người chết sống lại | turnkey online casino | casino robbery | forest slot | tải evowars io | tỷ lệ kèo malaysia mới nhất | soi cầu kép hôm nay | v-league 2024 lịch thi đấu |