NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

chơi pikachu online | code fifa online 4 | dien dan fifa online 3 thao luan chung | golden grimoire slot | quá khứ của win | biggest casino bonus | lịch nghỉ tết ngân hàng | hu vang slot | da ga casino | hp 88 ink | kqsx30 | play together miễn phí | trực tiếp bóng đá hàn quốc vs lebanon | casino clipart | casino trump | usb dongle with sim card slot | custom casino chip | lucky casino free spins | casino io | isle of capri casino | 4399 nau an | rolet casino | psg đấu với strasbourg | minecraft 1 18 1 | sweet alchemy slot | casinos online autorizados em portugal | trùm săn tiền thưởng | bonus wheel slots | rebuy stars casino | online casino sk | india slot | check rank lol | hôm nay đánh de con gì | lộc 79 win | video slot machines | football champions cup slot | venetian casino las vegas | nirvana slot | giang hồ phố hoa phần 2 | thống kê tần suất lôtô miền bắc | 1gom com ty le keo malaysia | lịch thi đấu vòng loại world cup 2022 châu mỹ | hotels near blue chip casino | konami slots online | casino venus | truyên ngôn tình hay | clover rollover slot | mobileblog | tải 888 casino | lịch thi đấu playoff lck |