NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

live casino online free | borgata hotel casino & spa atlantic city | thống kê xổ số bắc ninh | smb to pci e slots | doremon tap dai | casino saigon | choi casino truc tuyen | wink slots promo code | kynu huong tuyet | slot attendant | online slots welcome bonus | trường nguyệt tân minh | tiger casino slots | best casino app for android | plaza hotel and casino las vegas | lucky slots casino | casino online vina | việt nam 7m cn | giant panda slot | lucky ruby border casino | winbet casino az | game slot đổi thưởng uy tín nhất hiện nay | thevang tv | stepper motor arduino | casino x отзывы | lê bống lộ 7p clip | agen judi live casino | 2 so cuoi | BWIN | kq100 ngay | kerching casino | casino hu | quá khứ của win | casino trực tuyến khuyến mãi | culi trong bóng đá là gì | top 100 online casinos uk | australia online casino | online casino paysafecard | best uk slots | tha casino | play slots for real money | slots top up by phone bill | old slot machines for sale | id slot punch | online casino tips |