NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ios 15 6 beta 3 | expresscard slot egpu | nằm mơ thấy nhiều cua đồng | 9club casino | cara daftar judi slot online | nằm mơ thấy xác chết đánh số gì | fake slots | sudoku mức độ khó | lộc 79 win | ace88 info | nuoi lo kep khung 2 ngay | zodiac casino einloggen | casino equipment for sale | xóa trang trống trong word | casino hotel for sale | miền trung gồm tỉnh nào | miami casino hotel | venus bị bắt | seven sins slot | thiendia | xsmb hôm nay đánh con gì bà con ơi | lost life | ddowload zalo | cash wheel slot machine | game slot online | twin là gì | lucky89 border casino | bé tập đánh răng | slot jerry | stt chất | casino hotel | hd slot machine | casino in ho chi minh | cài đặt shopee | lịch thi đấu vcs | casino online australia real money | 32red casino review | games dua xe dia hinh | go aircraft odd | bắn cá bctc trên web | game vh | soi cầu kép hôm nay | cgv móng cái | open slot | 32 bit pci slot |