NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cách tính tài xỉu bóng đá | 200 slots bonus | spbo live score | doraemon nobita và cuộc chiến vũ trụ tí hon 2021 | online casino mobile bonus | tải bắn cá h5 | casino hu | slot god of wealth | thống kê giải đặc biệt 30 ngày | nằm mơ thấy người chết đánh số gì | stepper motor arduino | bói bài tây | west casino | w99 | venetian macau casino | 888bet casino | well of wonders slot | slotty casino | live casino online | coral slots | caro casino | parx casino bonus codes | hanoi casino list | jeetwin casino | reel gems slot | next co uk vip sale slot | slot casino free | kí tự liên quân | top casino | jackpot strike casino | 52choigame | casino trực tuyến cvproducts | slots la gì | 5 reel slots online | giochi online slot | bk8 casino | soi keo juve | đá gà casino 67 | casino cups | club slot | soi cầu xsvl tài lộc | swamp attack |